A Uniaxial Compression Experiment with CO2-Bearing Coal Using a Visualized and Constant-Volume Gas-Solid Coupling Test System

J Vis Exp. 2019 Jun 12:(148). doi: 10.3791/59405.

Abstract

Injecting carbon dioxide (CO2) into a deep coal seam is of great significance for reducing the concentration of greenhouse gases in the atmosphere and increasing the recovery of coalbed methane. A visualized and constant-volume gas-solid coupling system is introduced here to investigate the influence of CO2 sorption on the physical and mechanical properties of coal. Being able to keep a constant volume and monitor the sample using a camera, this system offers the potential to improve instrument accuracy and analyze fracture evolution with a fractal geometry method. This paper provides all steps to perform a uniaxial compression experiment with a briquette sample in different CO2 pressures with the gas-solid coupling test system. A briquette, cold-pressed by raw coal and sodium humate cement, is loaded in high-pressure CO2, and its surface is monitored in real-time using a camera. However, the similarity between the briquette and the raw coal still needs improvement, and a flammable gas such as methane (CH4) cannot be injected for the test. The results show that CO2 sorption leads to peak strength and elastic modulus reduction of the briquette, and the fracture evolution of the briquette in a failure state indicates fractal characteristics. The strength, elastic modulus, and fractal dimension are all correlated with CO2 pressure but not with a linear correlation. The visualized and constant-volume gas-solid coupling test system can serve as a platform for experimental research about rock mechanics considering the multifield coupling effect.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Atmosphere / chemistry*
  • Carbon Dioxide / metabolism*
  • Coal / analysis*

Substances

  • Coal
  • Carbon Dioxide