High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals

J Phys Chem Lett. 2019 Jul 18;10(14):4025-4031. doi: 10.1021/acs.jpclett.9b01649. Epub 2019 Jul 5.

Abstract

We demonstrate high-mobility solution-processed inorganic field-effect transistors (FETs) with ultra-short channel (USC) length using semiconductor CdSe nanocrystals (NCs). Capping of the NCs with hybrid inorganic-organic CdCl3--butylamine ligands enables coarsening of the NCs during annealing at a moderate temperature, resulting in the devices having good transport characteristics with electron mobilities in the saturation regime reaching 8 cm2 V-1 s-1. Solution-based processing of the NCs and fabrication of thin films involve neither harsh conditions nor the use of hydrazine. Employing photolithographic methods, we fabricated FETs with a vertical overlap of source and drain electrodes to achieve a submicrometer channel length. To the best of our knowledge, this is the first report on an USC FET based on colloidal semiconductor NCs. Because of a short channel length, the FETs show a normalized transconductance of 4.2 m V-1 s-1 with a high on/off ratio of 105.