Effective dynamic properties of random complex media with spherical particles

J Acoust Soc Am. 2019 Jun;145(6):3727. doi: 10.1121/1.5111743.

Abstract

The effective dynamic bulk modulus and density are presented for random media consisting of particles in a viscous host fluid, using a core-shell, self-consistent effective medium model, under the large compressional wavelength assumption. These properties are relevant to acoustic or dynamic processes in nano- and micro-particle fluids including particle density determination, resonant acoustic mixing, and acoustic characterisation. Analytical expressions are obtained for the effective bulk modulus and mass density, incorporating the viscous nature of the fluid host into the core-shell model through wave mode conversion phenomena. The effective density is derived in terms of particle concentration, particle and host densities, particle size, and the acoustic and shear wavenumbers of the liquid host. The analytical expressions obtained agree with prior known results in the limit of both static and inviscid cases; the ratio of the effective bulk modulus to that of the fluid is found to be quasi-static. Numerical calculations demonstrate the dependence of the effective mass density on frequency, particle size (from nano- to micro-regime), and concentration. Herein it is demonstrated both theoretically and numerically that the viscosity, often neglected in the literature, indeed plays a significant role in the effective properties of nanofluids.