A coarse-grain model for entangled polyethylene melts and polyethylene crystallization

J Chem Phys. 2019 Jun 28;150(24):244901. doi: 10.1063/1.5092229.

Abstract

The Shinoda-DeVane-Klein (SDK) model is herein demonstrated to be a viable coarse-grain model for performing molecular simulations of polyethylene (PE), affording new opportunities to advance molecular-level, scientific understanding of PE materials and processes. Both structural and dynamical properties of entangled PE melts are captured by the SDK model, which also recovers important aspects of PE crystallization phenomenology. Importantly, the SDK model can be used to represent a variety of materials beyond PE and has a simple functional form, making it unique among coarse-grain PE models. This study expands the suite of tools for studying PE in silico and paves the way for future work probing PE and PE-based composites at the molecular level.