3D feedback and observation for motor learning: Application to the roundoff movement in gymnastics

Hum Mov Sci. 2019 Aug:66:564-577. doi: 10.1016/j.humov.2019.06.008. Epub 2019 Jun 26.

Abstract

In this paper, we assessed the efficacy of different types of visual information for improving the execution of the roundoff movement in gymnastics. Specifically, two types of 3D feedback were compared to a 3D visualization only displaying the movement of the expert (observation) as well as to a more 'traditional' video observation. The improvement in movement execution was measured using different methods, namely subjective evaluations performed by official judges, and more 'quantitative appraisals based on time series analyses. Video demonstration providing information about the expert and 3D feedback (i.e., using 3D representation of the movement in monoscopic vision) combining information about the movement of the expert and the movement of the learner were the two types of feedback giving rise to the best improvement of movement execution, as subjectively evaluated by judges. Much less conclusive results were obtained when assessing movement execution using quantification methods based on time series analysis. Correlation analyses showed that the subjective evaluation performed by the judges can hardly be predicted/ explained by the 'more objective' results of time series analyses.

Keywords: 3D feedback; Dynamic time warping; Motor learning; Self + expert modeling; Virtual reality.