Full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick-Baez mirror optics

Opt Express. 2019 Jun 24;27(13):18318-18328. doi: 10.1364/OE.27.018318.

Abstract

A novel full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick-Baez mirror optics was developed. The total-reflection imaging mirror optics arrangement, with four reflections, has the advantage of being able to function both as a powerful low-pass energy filter, completely rejecting incident excitation X-rays, and as an achromatic optical imaging system. Isolated X-ray fluorescence signals can be imaged, avoiding imaging-detector saturation, with low background noise. A prototype fluorescence microscope constructed at SPring-8 demonstrated the capability to simultaneously image elemental distributions using various X-ray fluorescence signals (Ni, Cu, Zn, Ge, and Bi). A half-period spatial resolution of ~0.5-1 µm (1000-500 LP/mm) was achieved, owing to the achromaticity of the imaging mirrors and the photon-counting scheme of the CCD camera used for fluorescence detection.