A helical lock and key model of polyproline II conformation with SH3

Bioinformatics. 2020 Jan 1;36(1):154-159. doi: 10.1093/bioinformatics/btz527.

Abstract

Motivation: More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.

Results: Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0-120°), β (120-240°) and γ (240-360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.

Availability and implementation: We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Humans
  • Models, Molecular*
  • Peptides* / chemistry
  • Peptides* / metabolism
  • Protein Binding
  • Protein Structure, Secondary
  • src Homology Domains* / physiology

Substances

  • Peptides
  • polyproline