Analysis of the Amino Acid Sequence Variation of the 67-72p Protein and the Structural Pili Proteins of Corynebacterium diphtheriae for their Suitability as Potential Vaccine Antigens

Pol J Microbiol. 2019;68(2):233-246. doi: 10.33073/pjm-2019-025.

Abstract

The aim of this study was to identify the potential vaccine antigens in Corynebacterium diphtheriae strains by in silico analysis of the amino acid variation in the 67-72p surface protein that is involved in the colonization and induction of epithelial cell apoptosis in the early stages of infection. The analysis of pili structural proteins involved in bacterial adherence to host cells and related to various types of infections was also performed. A polymerase chain reaction (PCR) was carried out to amplify the genes encoding the 67-72p protein and three pili structural proteins (SpaC, SpaI, SapD) and the products obtained were sequenced. The nucleotide sequences of the particular genes were translated into amino acid sequences, which were then matched among all the tested strains using bioinformatics tools. In the last step, the affinity of the tested proteins to major histocompatibility complex (MHC) classes I and II, and linear B-cell epitopes was analyzed. The variations in the nucleotide sequence of the 67-72p protein and pili structural proteins among C. diphtheriae strains isolated from various infections were noted. A transposition of the insertion sequence within the gene encoding the SpaC pili structural proteins was also detected. In addition, the bioinformatics analyses enabled the identification of epitopes for B-cells and T-cells in the conserved regions of the proteins, thus, demonstrating that these proteins could be used as antigens in the potential vaccine development. The results identified the most conserved regions in all tested proteins that are exposed on the surface of C. diphtheriae cells.

The aim of this study was to identify the potential vaccine antigens in Corynebacterium diphtheriae strains by in silico analysis of the amino acid variation in the 67–72p surface protein that is involved in the colonization and induction of epithelial cell apoptosis in the early stages of infection. The analysis of pili structural proteins involved in bacterial adherence to host cells and related to various types of infections was also performed. A polymerase chain reaction (PCR) was carried out to amplify the genes encoding the 67–72p protein and three pili structural proteins (SpaC, SpaI, SapD) and the products obtained were sequenced. The nucleotide sequences of the particular genes were translated into amino acid sequences, which were then matched among all the tested strains using bioinformatics tools. In the last step, the affinity of the tested proteins to major histocompatibility complex (MHC) classes I and II, and linear B-cell epitopes was analyzed. The variations in the nucleotide sequence of the 67–72p protein and pili structural proteins among C. diphtheriae strains isolated from various infections were noted. A transposition of the insertion sequence within the gene encoding the SpaC pili structural proteins was also detected. In addition, the bioinformatics analyses enabled the identification of epitopes for B-cells and T-cells in the conserved regions of the proteins, thus, demonstrating that these proteins could be used as antigens in the potential vaccine development. The results identified the most conserved regions in all tested proteins that are exposed on the surface of C. diphtheriae cells.

MeSH terms

  • Adhesins, Bacterial / genetics*
  • Adhesins, Bacterial / immunology
  • Antigens, Bacterial / genetics*
  • Antigens, Bacterial / immunology
  • Computational Biology
  • Conserved Sequence
  • Corynebacterium diphtheriae / genetics*
  • Corynebacterium diphtheriae / immunology
  • Diphtheria / prevention & control*
  • Diphtheria Toxoid / genetics*
  • Diphtheria Toxoid / immunology
  • Epitopes, B-Lymphocyte / genetics
  • Epitopes, B-Lymphocyte / immunology
  • Epitopes, T-Lymphocyte / genetics
  • Epitopes, T-Lymphocyte / immunology
  • Genetic Variation*
  • Histocompatibility Antigens Class I / immunology
  • Histocompatibility Antigens Class II / immunology
  • Membrane Proteins / genetics*
  • Membrane Proteins / immunology
  • Polymerase Chain Reaction
  • Protein Binding
  • Sequence Analysis, DNA

Substances

  • Adhesins, Bacterial
  • Antigens, Bacterial
  • Diphtheria Toxoid
  • Epitopes, B-Lymphocyte
  • Epitopes, T-Lymphocyte
  • Histocompatibility Antigens Class I
  • Histocompatibility Antigens Class II
  • Membrane Proteins