Regional Ultrahigh-Resolution Rescan in a Clinical Whole-Body CT Scanner Using a Contact Detector Insert

Tomography. 2019 Jun;5(2):233-238. doi: 10.18383/j.tom.2019.00002.

Abstract

Ultrahigh-resolution, low-dose rescans in a region of interest following a general screening computed tomography (CT) scan is motivated by the need to reduce invasive tissue biopsy procedures in cancer screening. We describe a new method to meet the conflicting demands of ultrahigh resolution, high-speed and ultralow-dose, and the first proof-of-concept experiment. With improving detector resolution, the limiting factor for the system resolution of whole-body CT scanners shifts to the penumbra of the source focal spot. The penumbra unsharpness is minimized by inserting flat-panel detector(s) that are in direct contact with the body. In the hybrid system, the detector insert and the CT detector acquire data simultaneously, whereby the standard CT images give the position and orientation of the detector insert(s) as needed for tomosynthesis reconstruction. Imaging tests were performed with a compact photon-counting detector insert on resolution targets of both high- and low-contrast as well as a mouse specimen, all inside a body phantom. Detector insert tomosynthesis provided twice the resolution of the CT scanner alone at the same dose concentration. The short 2-cm beam collimation of the tomosynthesis rescan gave an effective dose equivalent to 6% of an average CT scan in the chest or abdomen.

Keywords: CT re-scan; contact detector insert; hybrid CT; tomosynthesis; ultrahigh resolution; ultralow dose.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Equipment Design
  • Phantoms, Imaging*
  • Tomography Scanners, X-Ray Computed*
  • Tomography, X-Ray Computed / instrumentation*
  • Tomography, X-Ray Computed / methods*
  • Whole Body Imaging / methods*