TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins

Front Microbiol. 2019 Jun 12:10:1302. doi: 10.3389/fmicb.2019.01302. eCollection 2019.

Abstract

Human T-cell leukemia viruses type 1 (HTLV-1) and type 2 (HTLV-2) share a common genome organization and expression strategy but have distinct pathological properties. HTLV-1 is the etiological agent of Adult T-cell Leukemia (ATL) and of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), whereas HTLV-2 does not cause hematological disorders and is only sporadically associated with cases of subacute myelopathy. Both HTLV genomes encode two regulatory proteins that play a pivotal role in pathogenesis: the transactivating Tax-1 and Tax-2 proteins and the antisense proteins HBZ and APH-2, respectively. We recently reported that Tax-1 and Tax-2 form complexes with the TNF-receptor associated factor 3, TRAF3, a negative regulator of the non-canonical NF-κB pathway. The NF-κB pathway is constitutively activated by the Tax proteins, whereas it is inhibited by HBZ and APH-2. The antagonistic effects of Tax and antisense proteins on NF-κB activation have not yet been fully clarified. Here, we investigated the effect of TRAF3 interaction with HTLV regulatory proteins and in particular its consequence on the subcellular distribution of the effector p65/RelA protein. We demonstrated that Tax-1 and Tax-2 efficiency on NF-κB activation is impaired in TRAF3 deficient cells obtained by CRISPR/Cas9 editing. We also found that APH-2 is more effective than HBZ in preventing Tax-dependent NF-κB activation. We further observed that TRAF3 co-localizes with Tax-2 and APH-2 in cytoplasmic complexes together with NF-κB essential modulator NEMO and TAB2, differently from HBZ and TRAF3. These results contribute to untangle the mechanism of NF-κB inhibition by HBZ and APH-2, highlighting the different role of the HTLV-1 and HTLV-2 regulatory proteins in the NF-κB activation.

Keywords: APH-2; HBZ; HTLV; NF-κB; TRAF3; Tax.