All-solution-processed Si films with broadband and omnidirectional light absorption

Nanotechnology. 2019 Oct 4;30(40):405202. doi: 10.1088/1361-6528/ab2d05. Epub 2019 Jun 26.

Abstract

Silicon photonic structures have attracted a great deal of attention due to their potential benefits of efficient light management in optoelectronic applications. In this paper, we demonstrate broadband optical absorption enhancement in solution-processed amorphous silicon (a-Si) by leveraging the advantages of silicon photonic structures. Graded refractive index silicon multi-layer structures are employed by modulating optical constants with simple process optimization, resulting in significantly improved reflectance over a broad range of visible wavelengths. In addition, nanopatterning flexibility of solution-processed silicon provides benefits for tailoring silicon optical properties. With the incorporation of the two-dimensional submicron pattern into silicon films, the absorptivity of silicon films improves considerably below the wavelength of the bandgap (λ ∼ 800 nm), and the limited bandwidth of absorptivity in silicon films can be extended to near-infrared wavelengths by coating with a thin gold layer. The methodology is generally applicable to a platform for improving the broadband optical absorption of photonic and optoelectronic devices.