Interactions between motor exploration and reinforcement learning

J Neurophysiol. 2019 Aug 1;122(2):797-808. doi: 10.1152/jn.00390.2018. Epub 2019 Jun 26.

Abstract

Motor exploration, a trial-and-error process in search for better motor outcomes, is known to serve a critical role in motor learning. This is particularly relevant during reinforcement learning, where actions leading to a successful outcome are reinforced while unsuccessful actions are avoided. Although early on motor exploration is beneficial to finding the correct solution, maintaining high levels of exploration later in the learning process might be deleterious. Whether and how the level of exploration changes over the course of reinforcement learning, however, remains poorly understood. Here we evaluated temporal changes in motor exploration while healthy participants learned a reinforcement-based motor task. We defined exploration as the magnitude of trial-to-trial change in movements as a function of whether the preceding trial resulted in success or failure. Participants were required to find the optimal finger-pointing direction using binary feedback of success or failure. We found that the magnitude of exploration gradually increased over time when participants were learning the task. Conversely, exploration remained low in participants who were unable to correctly adjust their pointing direction. Interestingly, exploration remained elevated when participants underwent a second training session, which was associated with faster relearning. These results indicate that the motor system may flexibly upregulate the extent of exploration during reinforcement learning as if acquiring a specific strategy to facilitate subsequent learning. Also, our findings showed that exploration affects reinforcement learning and vice versa, indicating an interactive relationship between them. Reinforcement-based tasks could be used as primers to increase exploratory behavior leading to more efficient subsequent learning.NEW & NOTEWORTHY Motor exploration, the ability to search for the correct actions, is critical to learning motor skills. Despite this, whether and how the level of exploration changes over the course of training remains poorly understood. We showed that exploration increased and remained high throughout training of a reinforcement-based motor task. Interestingly, elevated exploration persisted and facilitated subsequent learning. These results suggest that the motor system upregulates exploration as if learning a strategy to facilitate subsequent learning.

Keywords: meta-learning; motor exploration; reinforcement learning; savings; trial and error.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Exploratory Behavior / physiology*
  • Feedback, Psychological / physiology
  • Female
  • Humans
  • Male
  • Metacognition / physiology*
  • Motor Activity / physiology*
  • Practice, Psychological*
  • Psychomotor Performance / physiology*
  • Reinforcement, Psychology*
  • Young Adult