pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface

Soft Matter. 2019 Jul 10;15(27):5529-5536. doi: 10.1039/c9sm00891h.

Abstract

Additional HCl can facilely control the dynamic noncovalent interaction between anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and additional organic matter, 4,4'-oxydianiline (ODA), at the water/oil interface. At low HCl concentration (ODA/HCl molar ratio (r) = 1 : 1.5, [ODA] = 250 mg L-1), the ODA+ ions effectively enhanced the SDBS ability to reduce the water/oil interfacial tension (IFT) by about two orders of magnitude, while the (SDBS)2/ODA2+ gemini-like surfactants could be constructed at a relatively high HCl concentration (r = 1 : 4, [ODA] = 250 mg L-1), which could largely reduce the IFT to 1.19 × 10-3 mN m-1. Molecular simulation was employed to explore the interfacial activity of ODAn+ (ODA+/ODA2+) ions and the SDBS/ODAn+ interaction. The control experiments used another three surfactants to verify the proposed model. The pH-switchable gradual protonation of amino groups in ODA molecules determined the SDBS/ODA interfacial assembly, which was responsible for the reversal of IFT variations and the related emulsion behaviors.