Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst

J Hazard Mater. 2019 Nov 5:379:120750. doi: 10.1016/j.jhazmat.2019.120750. Epub 2019 Jun 7.

Abstract

Catalytic incineration is one of the cost-effective technologies to deal with odor cooking oil fumes (COFs). Hydrophobic carbon nanotubes (CNT) supported Pt catalysts were prepared by incipient wetness impregnation method. The 2.0 wt.%Pt/CNT catalyst gave the highest activity with the lowest light-off temperature near 200 °C. The catalyst was further coated on the carbonized honeycomb which offered low-pressure drop and high surface area per unit volume. Toward feasibility application, hydrophobic honeycomb supported Pt/CNT catalyst achieved an excellent catalytic performance with the conversion of 88.0-91.3 % in gas hourly space velocity (GHSV) ranging from 5,700 to 17,200 h-1 at 300 °C. Importantly, the honeycomb supported Pt/CNT catalyst could remove COFs substantially under simulated cooking conditions. Only a slight amount of heptane remained after catalytic incineration. In addition, the honeycomb support used much less Pt/CNT catalyst by maintaining the same performance, compared with powder catalyst. Our research outcome provides an excellent opportunity to apply the honeycomb supported Pt/CNT catalyst for moderate-temperature catalytic incineration of odor exhaust from kitchen hood.

Keywords: Carbon nanotube; Cooking oil fumes; Honeycomb; Hydrophobic; Pt catalyst.

Publication types

  • Research Support, Non-U.S. Gov't