Electrochemical degradation of oxalic acid over highly reactive nano-textured γ- and α-MnO2/carbon electrode fabricated by KMnO4 reduction on loofah sponge-derived active carbon

J Hazard Mater. 2019 Nov 5:379:120759. doi: 10.1016/j.jhazmat.2019.120759. Epub 2019 Jun 11.

Abstract

Manganese dioxide incorporated activated carbon (MnO2/AC) was synthesized and used to electrochemically degrade oxalic acid in aqueous solutions. The highly porous carbon provided reactive sites for the electro-sorption of oxalic acid and MnO2, with a specific polymorphism efficiently mediating the electron transfer between the electrode and organic pollutants. The activated carbon, made from the pyrolysis of dry loofah sponge using ZnCl2 as activating agent, exhibited a high double-layer capacitance dependent upon the heating temperature (100 F/g at 800 °C). The γ-MnO2 was in-situ deposited over the microporous structure of activated carbon through the redox reaction between KMnO4 and carbon. Simple further calcination converted γ-MnO2 to α-MnO2 nano-whisker at temperatures above 500 °C. Cyclic voltammetry showed that oxalic acid significantly improved the anodic current of the Mn(III)/Mn(IV) redox couple on the MnO2/AC electrode at an electrode potential around + 0.6 V (vs. Ag/AgCl). About 95% of oxalic acid degradation was achieved at pH < 4; meanwhile, 80% of the mineralization (total organic carbon removal) was attained independent of pH. Calcination converted γ-MnO2 to α-MnO2 which had higher electrochemical stability and inhibited the dissolution of Mn(II) from the electrode.

Keywords: Activated carbon; Electrical capacitance; Manganese dioxide; Oxalate mineralization; Polymorphism; Voltammetry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Charcoal / chemistry*
  • Electrochemical Techniques / methods*
  • Electrodes
  • Luffa / chemistry*
  • Manganese Compounds / chemistry*
  • Nanostructures / chemistry*
  • Oxalic Acid / analysis*
  • Oxidation-Reduction
  • Oxides / chemistry*
  • Porosity
  • Potassium Permanganate / chemistry*
  • Surface Properties
  • Water Pollutants, Chemical / analysis*
  • Water Purification / methods*

Substances

  • Manganese Compounds
  • Oxides
  • Water Pollutants, Chemical
  • Potassium Permanganate
  • Charcoal
  • Oxalic Acid
  • manganese dioxide