Tribological Properties of Mo-Si-B Alloys Doped with La2O3 and Tested at 293-1173 K

Materials (Basel). 2019 Jun 23;12(12):2011. doi: 10.3390/ma12122011.

Abstract

According to the stoichiometric ratios of Mo-10Si-7B, Mo-12Si-8.5B, Mo-14Si-9.8B, and Mo-25Si-8.5B, some new Mo-Si-B alloys doped with 0.3 wt % lanthanum (III) oxide (La2O3) were prepared via liquid-liquid (L-L) doping, mechanical alloying (MA), and hot-pressing (HP) sintering technology. The phase-composition and microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The worn surfaces of the plate specimens were studied by confocal laser scanning microscopy (CLSM). Then, the tribological properties of Mo-Si-B alloy doped with sliding plate specimens of 0.3 wt % La2O3 were investigated against the Si3N4 ball specimens. The friction coefficients of Mo-Si-B alloys decreased and the wear rates of the alloys increased with test load. The high-temperature friction and wear behavior of Mo-Si-B alloy are related to the surface-oxidation and contact-deformation of the alloy at a high temperature. The low friction coefficients and the reduced wear rates are thought to be due to the formation of low friction MoO3 films. MoO3 changed the contact state of the friction pairs and behaved as lubricating films.

Keywords: Mo-Si-B alloys; liquid-liquid doping; tribological properties; wear-resistant.