The Scientific Information Model of Chang'e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification

Sensors (Basel). 2019 Jun 22;19(12):2806. doi: 10.3390/s19122806.

Abstract

The Chang'e-4 (CE-4) lunar rover, equipped with a visible and near-IR imaging spectrometer (VNIS) based on acousto-optic tunable filter spectroscopy, was launched to the far side of the moon on December 8, 2018. The detection band of the VNIS ranges from 0.45 to 2.4 μm. Because of the weak reflection of infrared radiation from the lunar surface, a static electronic phase-locked acquisition method is adopted in the infrared channel for signal amplification. In this paper, full-link simulations and modeling are conducted on the infrared channel information flow of the instrument. The signal characteristics of the VNIS are analyzed in depth, and the signal to noise ratio (SNR) prediction and laboratory verification are presented. On 4 January 2019, the VNIS started working successfully and acquired high-resolution spectrum data of the far side of the moon for the first time. Through analysis we have found that the SNR ratio is in line with our predictions, and the data obtained by VNIS in orbit are consistent with the information model proposed in this paper.

Keywords: infrared focal plane components; phase-locked; signal-to-noise ratio; spectral resolution; the Chang’e-4 lunar rover.