Influence of the preparation conditions on the morphology and photocatalytic performance Pt-modified hexaniobate composites

J Phys Condens Matter. 2019 Oct 2;31(39):394001. doi: 10.1088/1361-648X/ab2c5e. Epub 2019 Jun 24.

Abstract

The preparation of lamellar nanostructures through exfoliation of stacked niobates is an interesting approach to the development of photocatalysts for energy conversion and environmental remediation. These materials exhibit a rich surface chemistry and several nanocomposites can be produced through intercalation or impregnation of suitable precursors. In this work, the influence of the physico-chemical preparation conditions on the photocatalytic activity of Pt-hexaniobate nanocomposites was investigated aiming at the establishment of the main factors that control their photoreactivities. Modification of hexaniobate layers were carried out by adsorption and impregnation methods, using [Pt(NH3)4]Cl2 (Pt1) and H2PtCl6 (Pt2), respectively. The addition of platinum precursors (1% wt.) were performed in the presence of the exfoliating agent tert-butylammonium hydroxide, sNb, or after acidic precipitation followed by resuspension in plain water, eNb. All samples were submitted to photoirradiation to reduce the platinum precursors and the effect of a previous thermal treatment was also evaluated. It was observed that H2 evolution from aqueous methanol solutions is more favored on hexaniobate nanosheets (eNb-Pt1 and eNb-Pt2) instead of scrolled layers (sNb-Pt1 and sNb-Pt2), independent on the platinum precursor. Moreover, residual tert-butylammonium can act as hole scavenger and decrease the degradation rates for methanol oxidation in sNb samples. The curled layers observed for sNb samples seem to favor the photodegradation of cationic species, such as methylene blue. Thermal treatment at 500 °C leads to morphological changes with a decrease of the specific surface area due to restacking of the individual layers along with some curling. As a result, the H2 evolution rates strongly decreases in relation to the non-sintered samples, suggesting that the 'soft' photoreduction of platinum precursors is the best method for preparation of these photocatalysts. The correlations between the preparation conditions and the photocatalytic activity for different photoreactions can allow the development of optimized materials for specific applications.