Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors

Eur J Med Chem. 2019 Oct 1:179:38-55. doi: 10.1016/j.ejmech.2019.06.037. Epub 2019 Jun 17.

Abstract

Indoleamine 2, 3-dioxygenase 1 (IDO1) plays a key role in tryptophan catabolism which is an important mechanism in immune tolerance. The small molecule epacadostat is the most advanced IDO1 inhibitor, but its phase III trials as a single agent or in combinations with PD-1 antibody failed to show appreciable objective responses. To gain more insight on the antitumor efficacy of IDO1 inhibitors, we have designed a series of analogues of epacadostat by incorporating a cyclic aminosulfonamide moiety as the sidechain capping functionality. Compound 5a was found to display significant potency against recombinant hIDO1 and hIDO1 expressed HEK293 cancer cells. This compound has improved physico-chemical properties, acceptable PK parameters as well as optimal cardiac safety. Similar to epacadostat, 5a is ineffective as single agent in the CT-26 syngeneic xenograft model, however, the combination of 5a with PD-1 antibody showed both elevated tumor growth inhibition and prolonged median life span.

Keywords: Immunotherapy; Indoleamine 2,3-dioxygenase; Life span; Oxadiazole; PD-1.

MeSH terms

  • Amines / chemical synthesis
  • Amines / chemistry
  • Amines / pharmacology*
  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Female
  • HEK293 Cells
  • Humans
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / antagonists & inhibitors*
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / metabolism
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Molecular Structure
  • Oxadiazoles / chemical synthesis
  • Oxadiazoles / chemistry
  • Oxadiazoles / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Structure-Activity Relationship

Substances

  • Amines
  • Antineoplastic Agents
  • Enzyme Inhibitors
  • IDO1 protein, human
  • Indoleamine-Pyrrole 2,3,-Dioxygenase
  • Oxadiazoles