The combined effect of phytostabilization and different amendments on remediation of soils from post-military areas

Sci Total Environ. 2019 Oct 20:688:37-45. doi: 10.1016/j.scitotenv.2019.06.190. Epub 2019 Jun 14.

Abstract

Army bases and battle fields are areas of high pollution due to the chemicals released there. Soils in these areas suffer from these uses of the land, and ecosystem services are affected. Although, in the 20th century, the production of bombs and the locations of battle fields and army bases were widespread, there is little research on the impact of war on nature. Moreover, there is a need to rehabilitate the disturbed soils. The contents and ecological risks of Cu, Ni, Cd, Pb, Zn, and Cr in the topsoil from a post-military area (north-eastern Poland) were investigated. In addition, a vegetation experiment was performed with the technique of aided phytostabilization on soils from the study area. The novelty of this study is the assessment of the usefulness of soil amendments (chalcedonite, limestone, activated carbon) in heavy metal (HM) phytostabilization in contaminated soils from post-military areas. Soil samples were also examined for pollution quantification indicators, including the index of geoaccumulation (Igeo), contamination factor (CF), and degree of contamination, and subjected to the Ostracodtoxkit test. The mean contents of the tested HMs were higher than those stipulated in soil environmental quality standards. The highest Igeo (7.38) and CF (346) values were those of Cr and Zn, respectively. The highest increase in soil pH was observed after the application of limestone to the soil. The greatest reduction in Cu, Ni, and Cd contents was caused by addition of limestone. The contents of HMs in Festuca rubra were higher in its roots than in its above-ground parts.

Keywords: Aided phytostabilization; Ecological risk assessment; Heavy metal contamination; Military areas; Ostracodtoxkit test; Soil risk minimization.