Trauma-targeted delivery of tranexamic acid improves hemostasis and survival in rat liver hemorrhage model

J Thromb Haemost. 2019 Oct;17(10):1632-1644. doi: 10.1111/jth.14552. Epub 2019 Jul 15.

Abstract

Background: Trauma-associated hemorrhage and coagulopathy remain leading causes of mortality. Such coagulopathy often leads to a hyperfibrinolytic phenotype where hemostatic clots become unstable because of upregulated tissue plasminogen activator (tPA) activity. Tranexamic acid (TXA), a synthetic inhibitor of tPA, has emerged as a promising drug to mitigate fibrinolysis. TXA is US Food and Drug Administration-approved for treating heavy menstrual and postpartum bleeding, and has shown promise in trauma treatment. However, emerging reports also implicate TXA for off-target systemic coagulopathy, thromboembolic complications, and neuropathy.

Objective: We hypothesized that targeted delivery of TXA to traumatic injury site can enable its clot-stabilizing action site-selectively, to improve hemostasis and survival while avoiding off-target effects. To test this, we used liposomes as a model delivery vehicle, decorated their surface with a fibrinogen-mimetic peptide for anchorage to active platelets within trauma-associated clots, and encapsulated TXA within them.

Methods: The TXA-loaded trauma-targeted nanovesicles (T-tNVs) were evaluated in vitro in rat blood, and then in vivo in a liver trauma model in rats. TXA-loaded control (untargeted) nanovesicles (TNVs), free TXA, or saline were studied as comparison groups.

Results: Our studies show that in vitro, the T-tNVs could resist lysis in tPA-spiked rat blood. In vivo, T-tNVs maintained systemic safety, significantly reduced blood loss and improved survival in the rat liver hemorrhage model. Postmortem evaluation of excised tissue from euthanized rats confirmed systemic safety and trauma-targeted activity of the T-tNVs.

Conclusion: Overall, the studies establish the potential of targeted TXA delivery for safe injury site-selective enhancement and stabilization of hemostatic clots to improve survival in trauma.

Keywords: fibrinolysis; hemorrhage; rat model; targeted delivery; tranexamic acid; trauma.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antifibrinolytic Agents / administration & dosage*
  • Antifibrinolytic Agents / blood
  • Blood Platelets / drug effects*
  • Blood Platelets / metabolism
  • Disease Models, Animal
  • Fibrinogen / metabolism
  • Hemorrhage / blood
  • Hemorrhage / etiology
  • Hemorrhage / prevention & control*
  • Hemostasis / drug effects*
  • Liposomes
  • Liver Diseases / blood
  • Liver Diseases / etiology
  • Liver Diseases / prevention & control*
  • Molecular Mimicry
  • Nanoparticles
  • Peptides / blood
  • Rats, Sprague-Dawley
  • Tranexamic Acid / administration & dosage*
  • Tranexamic Acid / blood
  • Wounds and Injuries / blood
  • Wounds and Injuries / complications
  • Wounds and Injuries / drug therapy*

Substances

  • Antifibrinolytic Agents
  • Liposomes
  • Peptides
  • Tranexamic Acid
  • Fibrinogen