A hollow mesoporous carbon from metal-organic framework for robust adsorbability of ibuprofen drug in water

R Soc Open Sci. 2019 May 22;6(5):190058. doi: 10.1098/rsos.190058. eCollection 2019 May.

Abstract

Herein, we described a tunable method for synthesis of novel hollow mesoporous carbon (MPC) via direct pyrolysis (800oC) of MIL-53 (Fe) as a self-sacrificed template. The structural characterization revealed a hollow, amorphous, defective and mesoporous MPC along with high surface area (approx. 200 m2 g-1). For the experiments of ibuprofen adsorption onto MPC, effects of contact time, MPC dosage, ionic strength, concentration and temperature were systematically investigated. The optimal conditions consisted of pH = 3, concentration 10 mg l-1 and dose of 0.1 g l-1 for the highest ibuprofen removal efficiency up to 88.3% after 4 h. Moreover, adsorption behaviour, whereby chemisorption and monolayer controlled the uptake of ibuprofen over MPC, were assumed. Adsorption mechanisms including H-bonding, π-π interaction, metal-oxygen, electrostatic attraction were rigorously proposed. In comparison to several studies, the MPC nanocomposite in this work obtained the outstanding maximum adsorption capacity (206.5 mg g-1) and good reusability (5 cycles); thus, it can be used as a feasible alternative for decontamination of ibuprofen anti-inflammatory drug from water.

Keywords: MIL-53 (Fe); antibiotic pollutant; hollow mesoporous carbon; ibuprofen adsorption.

Associated data

  • figshare/10.6084/m9.figshare.c.4496075