Interface Engineering V2 O5 Nanofibers for High-Energy and Durable Supercapacitors

Small. 2019 Aug;15(31):e1901747. doi: 10.1002/smll.201901747. Epub 2019 Jun 19.

Abstract

A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2 O5 -NF) to manipulate the charge transport behavior and obtain high-energy and durable supercapacitors. The interface of V2 O5 -NF is modified with oxygen vacancies (Vö) in a one-step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö-V2 O5 /PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö-V2 O5 /PANI-based supercapacitors exhibit an excellent specific capacitance (523 F g-1 ) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next-generation energy storage systems.

Keywords: interfaces; local electric fields; polyaniline; supercapacitors; vanadium pentoxide.