SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics

Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13330-13339. doi: 10.1073/pnas.1902658116. Epub 2019 Jun 18.

Abstract

Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.

Keywords: ERK; MRAS; RAF; RAS; SHOC2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Associated Protein 9
  • CRISPR-Cas Systems
  • Cell Line, Tumor
  • Gene Editing
  • Gene Knockout Techniques
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • MAP Kinase Signaling System*
  • Phosphorylation
  • Protein Multimerization
  • raf Kinases / chemistry*
  • raf Kinases / metabolism*
  • ras Proteins / metabolism

Substances

  • Intracellular Signaling Peptides and Proteins
  • MRAS protein, human
  • SHOC2 protein, human
  • raf Kinases
  • CRISPR-Associated Protein 9
  • ras Proteins