Nanoparticle-controlled glassy dynamics in nematogen-based nanocolloids

Phys Rev E. 2019 May;99(5-1):052703. doi: 10.1103/PhysRevE.99.052703.

Abstract

Results of broad-band dielectric spectroscopy studies in liquid crystal (pentylcyanobiphenyl, 5CB)-based nanocolloids are presented. They reveal the strong impact of BaTiO_{3} nanoparticles on dynamics and uniaxial ordering. Studies were carried out in an extreme range of temperatures (∼150 K), including the supercooled nematic phase. For the latter, the unique "pretransitional" effect for dielectric constant on approaching solid state is reported. The distortion-sensitive analysis revealed super-Arrhenius dynamics but associated with critical-like behavior. In the isotropic phase, translational-orientational decoupling, unusual for the high temperature dynamic domain, was detected. It can be directly link to heterogeneities-prenematic fluctuations. The model linking the classical Landau-de Gennes approach with Imry-Ma arguments has been developed to discuss experimental results.