Stability of sunflower and rapeseed oil-in-water emulsions supplemented with ethanol-treated rapeseed meal protein isolate

J Food Sci Technol. 2019 Jun;56(6):3090-3098. doi: 10.1007/s13197-019-03806-6. Epub 2019 May 8.

Abstract

A protein isolate (ERPI) was prepared from ethanol-treated rapeseed meal and used as a stabilizing agent in sunflower and rapeseed oil-in-water emulsions. The aim of the current study was to explore the influence of protein and oil concentrations on initial stability of sunflower and rapeseed oil-in-water emulsions by evaluating Gibbs free energy (ΔG) and particle size distribution. The 7-day dynamics of emulsion stability was investigated by turbidity measurement as well. A 32 factorial design was applied to assess the significance of oil (5%, 10% and 15% w/w) and ERPI protein (0.25%, 0.5% and 1.0% w/w) addition on stability of the emulsions. The results demonstrated that the increase of oil concentrations from 5 to 15% positively influenced the initial stability of sunflower and rapeseed oil-in-water emulsions. In both oil types, ERPI protein supplementation at all levels resulted in significant differences in the stability of 5% and 10% oil emulsions but did not alter the initial stability of the emulsions prepared with either 15% sunflower or rapeseed oil. With a few exceptions, there was a good agreement between Gibbs free energy data and microstructural profiles of the emulsions. Overall, emulsions with all sunflower oil concentrations and 1.0% ERPI protein exhibited better initial and a 7-day stability dynamics compared to all rapeseed oil-based emulsions. The study demonstrated the potential of ethanol-treated rapeseed meal protein isolate to serve as an emulsifying agent in sunflower and rapeseed oil containing emulsions.

Keywords: Ethanol-treated rapeseed meal protein isolate; Gibbs free energy; Rapeseed oil-in-water emulsion; Stability dynamics; Sunflower oil-in-water emulsion.