Condensin-Mediated Chromosome Folding and Internal Telomeres Drive Dicentric Severing by Cytokinesis

Mol Cell. 2019 Jul 11;75(1):131-144.e3. doi: 10.1016/j.molcel.2019.05.021. Epub 2019 Jun 13.

Abstract

In Saccharomyces cerevisiae, dicentric chromosomes stemming from telomere fusions preferentially break at the fusion. This process restores a normal karyotype and protects chromosomes from the detrimental consequences of accidental fusions. Here, we address the molecular basis of this rescue pathway. We observe that tandem arrays tightly bound by the telomere factor Rap1 or a heterologous high-affinity DNA binding factor are sufficient to establish breakage hotspots, mimicking telomere fusions within dicentrics. We also show that condensins generate forces sufficient to rapidly refold dicentrics prior to breakage by cytokinesis and are essential to the preferential breakage at telomere fusions. Thus, the rescue of fused telomeres results from a condensin- and Rap1-driven chromosome folding that favors fusion entrapment where abscission takes place. Because a close spacing between the DNA-bound Rap1 molecules is essential to this process, Rap1 may act by stalling condensins.

Keywords: Hi-C; SMC; Telomere; abscission; condensing; lacI; mitosis; mutagenesis; telophase; yeast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / genetics*
  • Adenosine Triphosphatases / metabolism
  • Chromosome Breakpoints
  • Chromosomes, Fungal / metabolism*
  • Chromosomes, Fungal / ultrastructure
  • Cytokinesis / genetics
  • DNA, Fungal / genetics*
  • DNA, Fungal / metabolism
  • DNA-Binding Proteins / genetics*
  • DNA-Binding Proteins / metabolism
  • Gene Expression
  • Karyotype
  • Models, Genetic
  • Multiprotein Complexes / genetics*
  • Multiprotein Complexes / metabolism
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae / ultrastructure
  • Saccharomyces cerevisiae Proteins / genetics*
  • Saccharomyces cerevisiae Proteins / metabolism
  • Shelterin Complex
  • Telomere / metabolism*
  • Telomere / ultrastructure
  • Telomere-Binding Proteins / genetics*
  • Telomere-Binding Proteins / metabolism
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism

Substances

  • DNA, Fungal
  • DNA-Binding Proteins
  • Multiprotein Complexes
  • RAP1 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Shelterin Complex
  • Telomere-Binding Proteins
  • Transcription Factors
  • condensin complexes
  • Adenosine Triphosphatases