Iodine ion doped bromo bismuth oxide modified bismuth germanate: A direct Z-scheme photocatalyst with enhanced visible-light photocatalytic performance

J Colloid Interface Sci. 2019 Oct 1:553:186-196. doi: 10.1016/j.jcis.2019.06.007. Epub 2019 Jun 4.

Abstract

A series of Z-scheme I-BiOBr/Bi12GeO20 heterostructures were successfully obtained by a simple method. The Z-scheme I-BiOBr/Bi12GeO20 heterostructures show outstanding photocatalytic performance for degrading the various organic pollutants of the waste water. For degradation of Tetracycline (TC), the Z-scheme 30I-BiOBr/Bi12GeO20 heterostructure exhibits the superior rate constant, which is about 7.73 times, 3.52 times and 1.66 times higher than that of the pure Bi12GeO20, BiOBr and I-BiOBr, respectively. Meanwhile, as we expected, the Z-scheme 30I-BiOBr/Bi12GeO20 heterostructure also displays the enhanced photocatalytic perfomance for degradation of Ciprofloxacin (CIP), 2-Mercaptobenzothiazole (MBT) and reduction of aqueous Cr(VI). The enhancement of photocatalytic performance is attributed to the high redox capacity and the strong interfacial interaction between I-BiOBr and Bi12GeO20, which can effectively improve the separation of photo-induced electron-hole pairs. Additionally, the photocatalytic mechanism over the Z-scheme I-BiOBr/Bi12GeO20 heterostructure is provided. The research work may provide a promising approach to fabricate other Z-scheme heterostructures with efficient photocatalytic performance.

Keywords: Degradation pathways; Doping I(−) ions; I-BiOBr/Bi(12)GeO(20) heterostructure; Photocatalytic degradation and reduction; Z-scheme.