Electrochemical paper-based microfluidic device for high throughput multiplexed analysis

Talanta. 2019 Oct 1:203:280-286. doi: 10.1016/j.talanta.2019.05.081. Epub 2019 May 24.

Abstract

A disposable microfluidic electrochemical paper-based device for multiplexed analysis based on sixteen independent microfluidic channels with electrochemical detection is proposed. A major advantage of this work was the non-necessary use of a wax printer for devices manufacturing which has a high cost of operation. In addition, a commercial multiplexing module was used that has the multiplexing capability of 8-16 channels and, for the first time using this module, the strategy of multiplexing both the working and reference electrodes were used. These sixteen channels with the respective sensors can be operated employing one or multiple electrochemical techniques with good repeatability and reproducibility for high throughput analysis. As a proof of concept, the electrochemical performance of device was tested with ferrocenecarboxylic acid solution employing cyclic voltammetry, square-wave voltammetry, differential-pulse voltammetry and chronoamperometry. This innovative sensing platform presented capacity of production in large scale and application for clinical tests with safety and short time of assays. A biosensor was constructed using glucose oxidase on the platform for the glucose determination in urine as a non-invasive strategy. The analytical curve was linear in the glucose concentration range from 1.0 × 10-4 mol L-1 to 4 × 10-2 mol L-1, with a limit of detection of 3 × 10-5 mol L-1.

Keywords: Electrochemical paper-based analysis; Glucose; Microfluidic; Multiplex analysis; Urine.