Enantioselective ene-reduction of E-2-cyano-3-(furan-2-yl) acrylamide by marine and terrestrial fungi and absolute configuration of (R)-2-cyano-3-(furan-2-yl) propanamide determined by calculations of electronic circular dichroism (ECD) spectra

Chirality. 2019 Jul;31(7):534-542. doi: 10.1002/chir.23078. Epub 2019 Jun 13.

Abstract

This work reports the green organic chemistry synthesis of E-2-cyano-3(furan-2-yl) acrylamide under microwave radiation (55 W), as well as the use of filamentous marine and terrestrial-derived fungi, in the first ene-reduction of 2-cyano-3-(furan-2-yl) acrylamide to (R)-2-cyano-3-(furan-2-yl)propanamide. The fungal strains screened included Penicillium citrinum CBMAI 1186, Trichoderma sp. CBMAI 932 and Aspergillus sydowii CBMAI 935, and the filamentous terrestrial fungi Aspergillus sp. FPZSP 146 and Aspergillus sp. FPZSP 152. A compound with an uncommon CN-bearing stereogenic center at the α-C position was obtained by enantioselective reactions mediated in the presence of the microorganisms yielding the (R)-2-cyano-3-(furan-2-yl) propanamide 3a. Its isolated yield and e.e. ranged from 86% to 98% and 39% to 99%, respectively. The absolute configuration of the biotransformation products was determined by time-dependent density functional theory (TD-DFT) calculations of electronic circular dichroism (ECD) spectra. Finally, the tautomerization of 2-cyano-3-(furan-2-yl) propanamide 3a to form an achiral ketenimine was observed and investigated in presence of protic solvents.

Keywords: Knoevenagel condensation; biocatalysis; electronic circular dichroism; enoate reductase; marine- and terrestrial-derived fungi.

Publication types

  • Research Support, Non-U.S. Gov't