Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water

Nat Commun. 2019 Jun 13;10(1):2606. doi: 10.1038/s41467-019-10740-w.

Abstract

The structure and the role of the interfacial water in mediating the interactions of extended hydrophobic surfaces are not well understood. Two-dimensional materials provide a variety of large and atomically flat hydrophobic surfaces to facilitate our understanding of hydrophobic interactions. The angstrom resolution capabilities of three-dimensional AFM are exploited to image the interfacial water organization on graphene, few-layer MoS2 and few-layer WSe2. Those interfaces are characterized by the existence of a 2 nm thick region above the solid surface where the liquid density oscillates. The distances between adjacent layers for graphene, few-layer MoS2 and WSe2 are ~0.50 nm. This value is larger than the one predicted and measured for water density oscillations (~0.30 nm). The experiments indicate that on extended hydrophobic surfaces water molecules are expelled from the vicinity of the surface and replaced by several molecular-size hydrophobic layers.

Publication types

  • Research Support, Non-U.S. Gov't