Segmental Distribution of Hepatocellular Carcinoma Correlates with Microvascular Invasion in Liver Explants Undergoing Transplantation

J Cancer Epidemiol. 2019 May 2:2019:8534372. doi: 10.1155/2019/8534372. eCollection 2019.

Abstract

Introduction: Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients is a poor prognostic factor after liver transplantation and/or resection. Any correlation between MVI and segmental location of HCC has yet to be studied. Our aim is to evaluate the segmental location of HCC and any correlation with the presence of MVI, portal vein thrombosis (PVT) in explanted livers, and the recurrence of HCC after transplantation. Another objective of the study is to assess the treatment history (ablation or transarterial chemoembolization (TACE)) and size of the tumor with respect to the risk of MVI.

Methods: A single center, retrospective chart review, including 98 HCC patients, aged 18 years and older who had liver transplantation in our institute between 2012 and 2017. We reviewed the radiological images of the HCC tumors, the pathological findings of the explanted livers, and the follow-up imaging after transplantation.

Results: 98 patients with the diagnosis of HCC underwent liver transplantation between 2012 and 2017. The mean age of the cohort was 63 ± 8.2. Males represented 75% and Caucasian race represented 75% of the cohort. The most common etiology of cirrhosis was chronic hepatitis C virus infection followed by alcohol abuse and nonalcoholic steatohepatitis (NASH) with percentages of 50%, 23%, and 10%, respectively. Microvascular invasion was found in 16% of the patients while PVT and the recurrence of HCC were found in 17% and 6 % of the cohort, respectively. MVI was found in 10 single HCC and 6 multifocal HCC. Right lobe HCC had more MVI when compared to the left and multilobar HCC, with percentages of 11%, 2%, and 3%, respectively. Localization of HCC in segment 8 was associated with the highest percentage of MVI when compared to all other segments. The risk of MVI in segment 8 HCC was 3.5 times higher than the risk from the other segments (p=0.002) while no vascular invasion was found in segments 1, 3, and 5. The risk of vascular invasion in untreated HCC is 3 times the risk in treated HCC (P=0.03).

Conclusion: Our data indicate that the risk of microvascular invasion is highest in tumors localized to segment 8. The size and number of HCC tumors were not associated with an increased risk of microvascular invasion.