Long-term outcomes of semi-implantable functional electrical stimulation for central drop foot

J Neuroeng Rehabil. 2019 Jun 11;16(1):72. doi: 10.1186/s12984-019-0542-8.

Abstract

Background: Central drop foot is a common problem in patients with stroke or multiple sclerosis (MS). For decades, it has been treated with orthotic devices, keeping the ankle in a fixed position. It has been shown recently that semi-implantable functional electrical stimulation (siFES) of the peroneal nerve can lead to a greater gait velocity increase than orthotic devices immediately after being switched on. Little is known, however, about long-term outcomes over 12 months, and the relationship between quality of life (QoL) and gait speed using siFES has never been reported applying a validated tool. We provide here a report of short (3 months) and long-term (12 months) outcomes for gait speed and QoL.

Methods: Forty-five consecutive patients (91% chronic stroke, 9% MS) with central drop foot received siFES (Actigait®). A 10 m walking test was carried out on day 1 of stimulation (T1), in stimulation ON and OFF conditions, and repeated after 3 (T2) and 12 (T3) months. A 36-item Short Form questionnaire was applied at all three time points.

Results: We found a main effect of stimulation on both maximum (p < 0.001) and comfortable gait velocity (p < 0.001) and a main effect of time (p = 0.015) only on maximum gait velocity. There were no significant interactions. Mean maximum gait velocity across the three assessment time points was 0.13 m/s greater with stimulation ON than OFF, and mean comfortable gait velocity was 0.083 m/s faster with stimulation ON than OFF. The increase in maximum gait velocity over time was 0.096 m/s, with post hoc testing revealing a significant increase from T1 to T2 (p = 0.012), which was maintained but not significantly further increased at T3. QoL scores showed a main effect of time (p < 0.001), with post hoc testing revealing an increase from T1 to T2 (p < 0.001), which was maintained at T3 (p < 0.001). Finally, overall absolute QoL scores correlated with the absolute maximum and comfortable gait speeds at T2 and T3, and the increase in overall QoL scores correlated with the increase in comfortable gait velocity from T1 to T3. Pain was reduced at T2 (p < 0.001) and was independent of gait speed but correlated with overall QoL (p < 0.001).

Conclusions: Peroneal siFES increased maximal and comfortable gait velocity and QoL, with the greatest increase in both over the first three months, which was maintained at one year, suggesting that 3 months is an adequate follow-up time. Pain after 3 months correlated with QoL and was independent of gait velocity, suggesting pain as an independent outcome measure in siFES for drop foot.

Keywords: Actigait; Foot drop; Functional electrical stimulation; Gait; Peroneal nerve stimulation; Semi-implantable.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Electric Stimulation Therapy / instrumentation*
  • Electrodes, Implanted
  • Female
  • Gait Disorders, Neurologic / etiology
  • Gait Disorders, Neurologic / physiopathology
  • Gait Disorders, Neurologic / therapy*
  • Humans
  • Male
  • Middle Aged
  • Multiple Sclerosis / complications
  • Multiple Sclerosis / physiopathology
  • Quality of Life
  • Retrospective Studies
  • Stroke / complications
  • Stroke / physiopathology
  • Stroke Rehabilitation / instrumentation
  • Stroke Rehabilitation / methods
  • Treatment Outcome