Micro/nano-hierarchical structured TiO2 coating on titanium by micro-arc oxidation enhances osteoblast adhesion and differentiation

R Soc Open Sci. 2019 Apr 24;6(4):182031. doi: 10.1098/rsos.182031. eCollection 2019 Apr.

Abstract

Nano-structured and micro/nano-hierarchical structured TiO2 coatings were produced on polished titanium by the micro-arc oxidation (MAO) technique. This study was conducted to screen a suitable structured TiO2 coating for osteoblast adhesion and differentiation in dental implants. The formulation was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and wettability testing. Adhesion, proliferation and osteogenic differentiation of MG63 cells were analysed by SEM, Cell Counting Kit-8 (CCK-8) and quantitative real-time PCR. The micro/nano-hierarchical structured TiO2 coating with both slots and pores showed the best morphology and wettability. XRD analysis revealed that rutile predominated along with a minor amount of anatase in both TiO2 coatings. Adhesion and extension of MG63 cells on the micro/nano-hierarchical structured TiO2 coating were the most favourable. MG63 cells showed higher growth rates on the micro/nano-hierarchical structured TiO2 coating at 1 and 3 days. Osteogenic-related gene expression was markedly increased in the micro/nano-hierarchical structured TiO2 coating group compared with the polished titanium group at 7, 14 and 21 days. These results revealed the micro/nano-hierarchical structured TiO2 coating as a promising surface modification and suitable biomaterial for use with dental implants.

Keywords: MG63; dental implants; micro-arc oxidation; osteogenic differentiation; titanium.

Associated data

  • Dryad/10.5061/dryad.bj3570d