Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors

Dent Mater J. 2019 Jul 31;38(4):638-645. doi: 10.4012/dmj.2018-197. Epub 2019 Jun 7.

Abstract

Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis.

Keywords: Artifact; Magnetic resonance imaging; Shape; Titanium.

MeSH terms

  • Artifacts*
  • Magnetic Resonance Imaging*
  • Titanium

Substances

  • Titanium