Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy

Biomaterials. 2019 Sep:214:119226. doi: 10.1016/j.biomaterials.2019.119226. Epub 2019 May 24.

Abstract

Bacteria-driven drug-delivery systems have attracted great attention for their enhanced therapeutic specificity and efficacy in cancer treatment. YB1, a particularly attractive genetically modified safe Salmonella Typhimurium strain, is known to penetrate hypoxic tumor cores with its self-driven properties while remarkably avoiding damage to normal tissues. Herein, nanophotosensitizers (indocyanine green (ICG)-loaded nanoparticles, INPs) were covalently attached to the surface of YB1 with amide bonds to develop a biotic/abiotic cross-linked system (YB1-INPs) for tumor precision therapy. YB1 microswimmer retained its viability after efficiently linking with INPs. This YB1-INPs treatment strategy demonstrated specific hypoxia targeting to solid tumors, perfect photothermal conversion, and efficient fluorescence (FL) imaging properties. Benefited from the combined contribution of tumor tissue destruction and the bacteria-attracting nutrients generation after photothermal treatment, the bioaccumulation of YB1-INPs was significantly improved 14-fold compared to no photothermal intervention. Furthermore, YB1-INPs pervaded throughout the large solid tumor (≥500 mm3). Under near-infrared (NIR) laser irradiation, YB1-INPs exhibited a dependable and highly efficient photothermal killing ability for eradicating the large solid tumor without relapse. This strategy of bacteria-driven hypoxia-targeting delivery has a great value for large solid tumors therapy with low toxicity and high efficiency.

Keywords: Bacteria-driven nanophotosensitizer; Hypoxia-targeting; Mutual bioaccumulation; Photothermal therapy; Tumor penetration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bioaccumulation
  • Female
  • Fluorescent Antibody Technique
  • Hyperthermia, Induced / methods
  • Immunohistochemistry
  • Indocyanine Green / chemistry
  • Mice
  • Mice, Inbred C57BL
  • Microbial Viability
  • Nanoparticles / chemistry
  • Phototherapy / methods
  • Salmonella / metabolism
  • Salmonella / physiology*
  • Salmonella typhimurium / metabolism
  • Salmonella typhimurium / physiology
  • Temperature
  • Urinary Bladder Neoplasms / microbiology
  • Urinary Bladder Neoplasms / therapy*

Substances

  • Indocyanine Green