Evaluation of deammonification reactor performance and microrganisms community during treatment of digestate from swine sludge CSTR biodigester

J Environ Manage. 2019 Sep 15:246:19-26. doi: 10.1016/j.jenvman.2019.05.113. Epub 2019 Jun 4.

Abstract

Digestate from anaerobic processes still contains relatively high amount of total organic carbon (TOC) that can inhibit deammonification. In this sense, the present study investigated the interference of TOC in a lab-scale expanded granular sludge bed (EGSB) deammonification reactor treating digestate from a continuous stirred tank reactor (CSTR) swine sludge biodigester. Additionally, the microorganisms community was analyzed when the process was submitted to different operational conditions. The study was divided into three phases according to the C/N ratio (0, 0.5 and 1 for phase I, phase II and phase III, respectively). At phase I the average nitrogen removal efficiency (NRE) was 65 ± 1.6%. With the increase of TOC in phase II (156 ± 8.15 mg L-1) the average NRE was 61 ± 9.8% which is statically equivalent to phase I (p < 0.05). On the other hand, at phase III (TOC was increased to 255 ± 3.50 mg L-1) the NRE decreased to 50 ± 3.9% which was 22% lower than in phase II. Stoichiometric coefficients of N2 was close to theoretical values during all experimental phases, while stoichiometric coefficient of N-NO3- was lower than theoretical values specially during phase III. Ca. Jettenia was favored when the reactor was fed with digestate although its proportion decreased in phase III. Thus, at the conditions employed in the present study it is recommended to use a C/N ratio of 0.5 (TOC concentration around 156 mg L-1) to treat digestate by deammonification process, in order to not diminish anammox microorganisms abundance. Thereby, the microorganisms community can be modulated based on carbon and nitrogen loading rates of a deammonification reactor for swine manure treatment purpose.

Keywords: Anammox; Animal wastewater; Nitrogen removal; Organic carbon.

MeSH terms

  • Animals
  • Bacteria
  • Bioreactors*
  • Manure
  • Nitrogen
  • Sewage*
  • Swine

Substances

  • Manure
  • Sewage
  • Nitrogen