Engineering of Human Corneal Endothelial Cells In Vitro

Int J Med Sci. 2019 Mar 10;16(4):507-512. doi: 10.7150/ijms.30759. eCollection 2019.

Abstract

Human corneal endothelial cells are responsible for controlling corneal transparency, however they are notorious for their limited proliferative capability. Thus, damage to these cells may cause irreversible blindness. Currently, the only way to cure blindness caused by corneal endothelial dysfunction is via corneal transplantation of a cadaver donor cornea with healthy corneal endothelium. Due to severe shortage of donor corneas worldwide, it has become paramount to develop human corneal endothelial grafts in vitro that can subsequently be transplanted in humans. Recently, we have reported effective expansion of human corneal endothelial cells by reprogramming the cells into progenitor status through use of p120-Kaiso siRNA knockdown. This new reprogramming approach circumvents the need of using induced pluripotent stem cells or embryonic stem cells. Successful promotion of this technology will encourage scientists to re-think how "contact inhibition" can safely be perturbed to our benefit, i.e., effective engineering of an in vivo-like tissue while successful maintaining the normal phenotype. In this review, we present current advances in reprogramming corneal endothelial cells in vitro, detail the methods to successful engineer human corneal endothelial grafts, and discuss their future clinical applications to cure corneal blindness.

Keywords: cornea; endothelium; engineering; progenitor.

Publication types

  • Review

MeSH terms

  • Cell Proliferation / genetics
  • Cornea / cytology
  • Cornea / pathology
  • Corneal Transplantation
  • Endothelial Cells / cytology*
  • Endothelium, Corneal / cytology*
  • Endothelium, Corneal / transplantation
  • Humans
  • Tissue Engineering*