Small molecule GSK-3 antagonists play a pivotal role in reducing the local inflammatory response, in promoting resident stem cell activation and in improving tissue repairing in regenerative dentistry

Histol Histopathol. 2019 Nov;34(11):1195-1203. doi: 10.14670/HH-18-133. Epub 2019 Jun 6.

Abstract

Regenerative dentistry is attracting growing interest in the scientific community, mainly because of its translational and promising therapeutic approach. The latest research carried out by the scientific community are aimed at triggering the local cellular response, in order to induce a physiological self-repairing of damaged oral tissues. Such physiological processes mainly involve the activation of local stem cell populations: mesenchymal stem cells, in fact, retain the ability to proliferate and to differentiate towards functional mature elements, thus leading towards healing of damaged tissues. Glycogen Synthase Kinase-3 (GSK-3) is a key-regulator of the Wnt/β-catenin pathway; it phosphorylates β-catenin, that then is degraded in the cytosol. The activation of such signalling, mediated by Wnt ligand/receptor association, inhibits GSK-3, leading to translocation of β-catenin to the nucleus and to gene transcription. Selective inhibitors of GSK-3 have been linked to the activity of Wnt signalling and to the regeneration of injured tissues, including complex dental and oral structures. Small Molecule GSK-3 Antagonists are the most interesting class of molecules acting with a "Bystander effect": reducing local inflammation and local bone resorption and triggering the activity and differentiation of resident "sleeping" MSCs. The aim of this narrative topical review is to describe the current knowledge on the role of small molecule GSK-3 antagonists in regenerative dentistry, with strategic insights towards the translational applications in nanomaterials in dentistry and in dental repairing.

Publication types

  • Review

MeSH terms

  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / metabolism
  • Bone Resorption
  • Cell Differentiation
  • Dentistry* / methods
  • Dentistry* / trends
  • Glycogen Synthase Kinase 3* / antagonists & inhibitors
  • Glycogen Synthase Kinase 3* / immunology
  • Glycogen Synthase Kinase 3* / metabolism
  • Humans
  • Inflammation / metabolism*
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism
  • Regeneration / physiology*
  • Stem Cells / cytology
  • Stem Cells / metabolism
  • Wnt Signaling Pathway / immunology*
  • beta Catenin / metabolism

Substances

  • beta Catenin
  • Glycogen Synthase Kinase 3

Grants and funding