Pretransitional behavior of viscoelastic parameters at the nematic to twist-bend nematic phase transition in flexible n-mers

Phys Chem Chem Phys. 2019 Jun 28;21(24):13078-13089. doi: 10.1039/c9cp00984a. Epub 2019 Jun 6.

Abstract

We report dynamic light scattering measurements of the orientational (Frank) elastic constants and associated viscosities among a homologous series of a liquid crystalline dimer, trimer, and tetramer exhibiting a uniaxial nematic (N) to twist-bend nematic (NTB) phase transition. The elastic constants for director splay (K11), twist (K22) and bend (K33) exhibit the relations K11 > K22 > K33 and K11/K22 > 2 over the bulk of the N phase. Their behavior near the N-NTB transition shows dependency on the parity of the number (n) of the rigid mesomorphic units in the flexible n-mers. Namely, the bend constant K33 in the dimer and tetramer turns upward and starts increasing close to the transition, following a monotonic decrease through most of the N phases. In contrast, K33 for the trimer flattens off just above the transition and shows no pretransitional enhancement. The twist constant K22 increases pretransitionally in both even and odd n-mers, but more weakly so in the trimer, while K11 increases steadily on cooling without evidence of pretransitional behavior in any n-mer. The viscosities associated with pure splay, twist-dominated twist-bend, and pure bend fluctuations in the N phase are comparable in magnitude to those of rod-like monomers. All three viscosities increase with decreasing temperature, but the bend viscosity in particular grows sharply near the N-NTB transition. The N-NTB pretransitional behavior is shown to be in qualitative agreement with the predictions of a coarse-grained theory, which models the NTB phase as a "pseudo-layered" structure with the symmetry (but not the mass density wave) of a smectic-A* phase.