Characteristic features of polytypism in compounds with the La18W10O57-type structure

Acta Crystallogr C Struct Chem. 2019 Jun 1;75(Pt 6):740-749. doi: 10.1107/S2053229619006107. Epub 2019 May 21.

Abstract

Crystals with the La18W10O57-type structure (6H and 5H polytypes) were obtained by a self-flux method from high-temperature solutions. Some of the crystal samples were studied by single-crystal X-ray structure analysis. The diffraction patterns indicated that two phases co-exist in each sample. The hexagonal lattices have a common period of a ≈ 9.0 Å and are non-equal in length but have equally oriented superstructure periods 6c (phase I) and 5c (phase II), c ≈ 5.4 Å. The structures of phases I and II were solved in the symmetry groups P-62c and P321, respectively, based on the X-ray data for crystals I and II, with predominant content of the first and second phase. The motif of isolated WO6 prisms with W atoms on the cell edges is common to both phases. WO6 octahedra, both isolated and joined by faces, are distributed along the c axis within the unit cells. Phase I contains extra layers of isolated WO6 octahedra compared to phase II. Tungsten sites in joined octahedra are disordered and partially occupied. Disordering is more expressed in phase II, which in return contains rather more W and O per atom of La. The refined chemical compositions are La18W10O57 for I and La15W8.5O48 for II.

Keywords: crystal structure; lanthanum; polytypism; rare earth tungstate.