Additivity of tree biomass components using ratio estimate

An Acad Bras Cienc. 2019;91(3):e20180272. doi: 10.1590/0001-3765201920180272. Epub 2019 Jun 3.

Abstract

This study deals with the subject biomass estimation. The objective was to achieve the additivity of tree biomass components, which is defined as the compatibility among the component predictions and total tree biomass, using ratio estimates. The biomass estimation model was applied to black wattle trees in forest stands, which include a sample of 670 trees in an age range of 1 to 10.75 years. The adjusted model, in which the total biomass, or sum of predicted components, is a function of the stem volume multiplied by the Scalar Coefficients Proxy of Density, proved to be of great interest for biomass estimation and consistent when compared to the results obtained by WNSUR estimates (traditional method). The natural additivity of the tree biomass components was fully achieved, when modeling them by means of ratio estimation. Equations developed from the proportional behavior of the biomass components at different ages did not require the use of linear regression models and were obtained from calibration with the experimental data. The estimators resulting from these equations proved to be appropriate to make a generic model for correction of ratios coefficients at different ages.

MeSH terms

  • Biomass*
  • Brazil
  • Models, Biological
  • Trees*