Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier

Opt Express. 2019 May 27;27(11):15289-15297. doi: 10.1364/OE.27.015289.

Abstract

We present a 100 kHz broadband vibrational sum-frequency generation (VSFG) spectrometer operating in the 5.7-10.5 µm (950-1750 cm-1) wavelength range. The mid-infrared beam of the system is obtained from a collinear, type-I LiGaS2-crystal-based optical parametric amplifier seeded by a supercontinuum and pumped directly by 180 fs, ~32 µJ, 1.03 µm pulses from an Yb:KGd(WO4)2 laser system. Up to 0.5 µJ mid-infrared pulses with durations below 100 fs were obtained after dispersion compensation utilizing bulk materials. We demonstrate the utility of the spectrometer by recording high-resolution, low-noise vibrational spectra of Langmuir-Blodgett supported lipid monolayers on CaF2. The presented VSFG spectrometer scheme offers superior signal-to-noise ratios and constitutes a high-efficiency, low-cost, easy-to-use alternative to traditional schemes relying on optical parametric amplification followed by difference frequency generation.