Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality

Sci Total Environ. 2019 Sep 20:684:597-609. doi: 10.1016/j.scitotenv.2019.05.370. Epub 2019 May 28.

Abstract

Impact of different biochars supplemented (10% w/w) to promote vermicomposting of sewage sludge (SS) and kitchen waste (KW) mixture (SS + KW, 70:30) was studied on the growth, reproduction and survival of earthworms, and ultimately the quality of vermicompost. Four types of biochar used as secondary material for preincubation (16 days) and vermicomposting (30 days) were: pine tree biochar (PTB), poplar plant biochar (PPB), wetland plant biochar (WPB) and yard waste biochar (YWB). Preincubation and vermicomposting of biomass mixture were undertaken in 60 L and 2 L capacity round-shaped bioreactors, respectively. Samples of biomass undergoing degradation were drawn after every 2 days during preincubation and with 5 days interval during vermicomposting to analyze them for plant nutrients and heavy metals contents. Amendment of vermicompost substrate (SS + KW) with biochars; PTB, PPB, WPB and YWB increased the reproduction rate of earthworms (Eisenia fetida) by 44.6, 53.9, 29.3 and 38.8%, respectively as compared to control (no biochar, NB). There has been significant reduction in total content of Cd (0.2-5.1%), Cr (7.3-10.8%), Cu (3.1-7.4%), Mn (3.2-8.4%), Pb (9.0-45.9%) and Zn (1.1-5.7%) by the application of different biochars as compared to NB after vermicomposting. The SEM/EDS images also reflected reduced concentration of these heavy metals in the final vermicompost as compared to initial mixtures. Progressively, biochar amendments increased the concentration of all macronutrients, viz., TN (15.8-31.0%), TP (8.6-9.9%), TK (2.8-17.3%), Ca (4.1-9.9%) and Mg (0.8-12.2%); while, reduced the pH (1.9-2.3%), content of Na (6.6-22.3%), TOC (6.6-15.4%), OM (5.0-8.2%) and C:N ratio (2.6-18.9%). Earthworm body accumulation factor (BAF) of heavy metals was: Cd > Zn > Pb > Cu > Mn > Cr at the termination stage of experiment. In conclusion, amending the SS + KW mixture with 10% (w/w) PPB for vermicomposting rendered higher count of cocoons, growth rate and reproduction rate of earthworms, which ultimately produce nutrients-rich vermicompost lower in heavy metals.

Keywords: Bioaccumulation factor; Biochar; Earthworms; Kitchen waste; Nutrients-rich compost; Sewage sludge.

MeSH terms

  • Animals
  • Charcoal / analysis*
  • Charcoal / classification
  • Composting / methods*
  • Metals, Heavy / chemistry*
  • Oligochaeta / growth & development
  • Oligochaeta / physiology*
  • Sewage / analysis*
  • Soil / chemistry*
  • Soil Pollutants / chemistry*

Substances

  • Metals, Heavy
  • Sewage
  • Soil
  • Soil Pollutants
  • biochar
  • Charcoal