Genome Mining-Based Identification of Identical Multirepeat Sequences in Plasmodium falciparum Genome for Highly Sensitive Real-Time Quantitative PCR Assay and Its Application in Malaria Diagnosis

J Mol Diagn. 2019 Sep;21(5):824-838. doi: 10.1016/j.jmoldx.2019.04.004. Epub 2019 May 31.

Abstract

Developing ultrasensitive methods capable of detecting submicroscopic parasitemia-a challenge that persists in low transmission areas, asymptomatic carriers, and patients showing recrudescence-is vital to achieving malaria eradication. Nucleic acid amplification techniques offer improved analytical sensitivity but are limited by the number of copies of the amplification targets. Herein, we perform a novel genome mining approach to identify a pair of identical multirepeat sequences (IMRSs) that constitute 170 and 123 copies in the Plasmodium falciparum genome and explore their potential as primers for PCR. Real-time quantitative PCR analyses have shown the ability of P. falciparum IMRSs to amplify as low as 2.54 fg of P. falciparum genomic DNA (approximately 0.1 parasite), with a striking 100-fold increase in detection limit when compared with P. falciparum 18S rRNA (251.4 fg; approximately 10 parasites). Validation with clinical samples from malaria-endemic regions has shown 6.70 ± 1.66 cycle better detection threshold in terms of Ct value for P. falciparum IMRSs, with approximately 100% sensitivity and specificity. Plasmodium falciparum IMRS assays are also capable of detecting submicroscopic infections in asymptomatic samples. To summarize, this approach of initiating amplification at multiple loci across the genome and generating more products with increased analytical sensitivity is different from classic approaches amplifying multicopy genes or tandem repeats. This can serve as a platform technology to develop advanced diagnostics for various pathogens.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods
  • DNA, Protozoan / analysis*
  • DNA, Protozoan / blood
  • DNA, Protozoan / genetics
  • Data Mining / methods
  • Genes, Protozoan
  • Genome, Protozoan*
  • Humans
  • Malaria, Falciparum / diagnosis*
  • Malaria, Falciparum / parasitology
  • Molecular Diagnostic Techniques / methods
  • Nucleic Acid Amplification Techniques / methods
  • Parasitemia / diagnosis*
  • Parasitemia / parasitology
  • Plasmodium falciparum / genetics*
  • Plasmodium falciparum / isolation & purification
  • Real-Time Polymerase Chain Reaction / methods*
  • Repetitive Sequences, Nucleic Acid / genetics*

Substances

  • DNA, Protozoan