Theoretical and experimental study on multibeam synthetic aperture sonar

J Acoust Soc Am. 2019 May;145(5):3177. doi: 10.1121/1.5109392.

Abstract

High-resolution imaging method is one of the researching focuses of underwater acoustic detection. Underwater small-target detection also requires detailed imaging technology. Multibeam echo sounders (MBESs) and synthetic aperture sonar (SAS) are the effective instruments widely researched to obtain underwater acoustic images. Constrained by the theory, the along-track resolution of MBES decreases with distance and the gaps problem of SAS always exists and both inevitably limit the quality of acoustic imaging. In this paper, a two dimensional multibeam synthetic aperture sonar (MBSAS) model is designed to overcome the shortcomings of conventional underwater imaging instruments. MBSAS can provide a three dimensional (3D) high-resolution acoustic image without a gap problem. An echo model and transducer array manifold are designed to meet the requirements of engineering applications. Imaging theory and target simulations prove the feasibility of the MBSAS model. The performance of the proposed model is demonstrated with a tank experiment. A detailed image is obtained through an experiment that can indicate the shapes of targets and has the ability to separate adjacent targets. The simulations and experimental results indicate that MBSAS can obtain a more detailed 3D full-scan image than conventional MBES and SAS system with a better energy focusing ability.