Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water

Environ Res. 2019 Aug:175:323-334. doi: 10.1016/j.envres.2019.05.022. Epub 2019 May 17.

Abstract

A novel bio-based anion exchanger was developed to remove sulphate from synthetic solutions and mine water. Different modification parameters such as chemical dosage and reaction time were tested when using a unique combination of branched polyethylenimine (PEI) and glycidyltrimethylammonium chloride (GTMAC) to produce an aminated biosorbent (termed PG-Peat). The novel and environment-friendly modification method was shown by FTIR and XPS analyses to be able to introduce quaternary ammonium and N-H groups into PG-Peat. The optimal modification conditions (PEI: 0.26 mmol/g, GTMAC: 0.0447 mol/g, reaction time: 18 h) resulted in the maximum sulphate uptake capacity (189.5 ± 2.7 mg/g) with a partition coefficient value of 0.02 mg/g/μM under acidic conditions. At low pH, amine groups on the peat surface became cationized, thereby resulting in a higher sulphate removal capacity. Batch sorption tests using PG-Peat exhibited rapid sulphate sorption after only five minutes of contact. The sulphate uptake by PG-Peat was unaffected by the presence of varying chloride concentrations, while slightly lower uptake capacity was observed when different concentrations of nitrate were present. The biosorbent showed high recyclability, which was revealed in regeneration studies. Tests were performed involving real mine water, where PG-Peat showed its potential to be a highly efficient biosorbent for sulphate removal at low pH values, indicating its suitability for treating acidic mine waters.

Keywords: Amination; Factorial design; Surface analysis; Sustainable adsorbent; Water treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Epoxy Compounds / chemistry*
  • Hydrogen-Ion Concentration
  • Mining
  • Polyethyleneimine / chemistry*
  • Quaternary Ammonium Compounds / chemistry*
  • Soil
  • Sulfates / chemistry*
  • Waste Disposal, Fluid / methods*
  • Water Pollutants, Chemical / chemistry*
  • Water Purification

Substances

  • Epoxy Compounds
  • Quaternary Ammonium Compounds
  • Soil
  • Sulfates
  • Water Pollutants, Chemical
  • glycidyl trimethylammonium
  • Polyethyleneimine