Concordance in wetland physicochemical conditions, vegetation, and surrounding land cover is robust to data extraction approach

PLoS One. 2019 May 31;14(5):e0216343. doi: 10.1371/journal.pone.0216343. eCollection 2019.

Abstract

Concordance among wetland physicochemical conditions, vegetation, and surrounding land cover may result from the influence of land cover on the sources of plant propagules, on physicochemical conditions, and their subsequent determination of growing conditions. Alternatively, concordance may result if differences in climate, soils, and species pools are spatially confounded with differences in human population density and land conversion. Further, we expect that land cover within catchment boundaries will be more predictive than land cover in symmetrical buffers if runoff is a major pathway. We measured concordance between land cover, wetland vegetation and physicochemical conditions in 48 prairie pothole wetlands, controlling for inter-wetland distance. We contrasted land-cover data collected over a four-year period by multiple extraction approaches including topographically-delineated catchments and nested 30 m to 5,000 m radius buffers. After factoring out inter-wetland distance, physiochemical conditions were significantly concordant with land cover. Vegetation was not significantly concordant with land cover, though it was strongly and significantly concordant with physicochemical conditions. More, concordance was as strong when land cover was extracted from buffers <500 m in radius as from catchments, indicating the mechanism responsible is not topographically constrained. We conclude that local landscape structure does not directly influence wetland vegetation composition, but rather that vegetation depends on 1) physicochemical conditions in the wetland that are affected by surrounding land cover and on 2) regional factors such as the vegetation species pool and geographic gradients in climate, soil type, and land use.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chemical Phenomena
  • Climate
  • Ecosystem*
  • Plants
  • Soil
  • Wetlands*

Substances

  • Soil

Associated data

  • Dryad/10.5061/dryad.62t8442

Grants and funding

RCR received award 2094A from Alberta Innovates (https://albertainnovates.ca/). Funders played no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.