Phospholipid turnover and acyl chain remodeling in the yeast ER

Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jan;1865(1):158462. doi: 10.1016/j.bbalip.2019.05.006. Epub 2019 May 27.

Abstract

The turnover of phospholipids plays an essential role in membrane lipid homeostasis by impacting both lipid head group and acyl chain composition. This review focusses on the degradation and acyl chain remodeling of the major phospholipid classes present in the ER membrane of the reference eukaryote Saccharomyces cerevisiae, i.e. phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Phospholipid turnover reactions are introduced, and the occurrence and important functions of phospholipid remodeling in higher eukaryotes are briefly summarized. After presenting an inventory of established mechanisms of phospholipid acyl chain exchange, current knowledge of phospholipid degradation and remodeling by phospholipases and acyltransferases localized to the yeast ER is summarized. PC is subject to the PC deacylation-reacylation remodeling pathway (PC-DRP) involving a phospholipase B, the recently identified glycerophosphocholine acyltransferase Gpc1p, and the broad specificity acyltransferase Ale1p. PI is post-synthetically enriched in C18:0 acyl chains by remodeling reactions involving Cst26p. PE may undergo turnover by the phospholipid: diacylglycerol acyltransferase Lro1p as first step in acyl chain remodeling. Clues as to the functions of phospholipid acyl chain remodeling are discussed.

Keywords: Acyl chain exchange; Acyltransferase; Membrane lipid homeostasis; Membrane phospholipids; Phospholipid degradation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acylation
  • Animals
  • Endoplasmic Reticulum / chemistry
  • Endoplasmic Reticulum / metabolism*
  • Humans
  • Phosphatidylcholines / analysis
  • Phosphatidylcholines / metabolism
  • Phosphatidylethanolamines / analysis
  • Phosphatidylethanolamines / metabolism
  • Phosphatidylinositols / analysis
  • Phosphatidylinositols / metabolism
  • Phospholipids / analysis
  • Phospholipids / metabolism*
  • Saccharomyces cerevisiae / chemistry
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / metabolism

Substances

  • Phosphatidylcholines
  • Phosphatidylethanolamines
  • Phosphatidylinositols
  • Phospholipids
  • Saccharomyces cerevisiae Proteins
  • phosphatidylethanolamine