The Pro-Oncogenic Adaptor CIN85 Acts as an Inhibitory Binding Partner of Hypoxia-Inducible Factor Prolyl Hydroxylase 2

Cancer Res. 2019 Aug 15;79(16):4042-4056. doi: 10.1158/0008-5472.CAN-18-3852. Epub 2019 May 29.

Abstract

The EGFR adaptor protein, CIN85, has been shown to promote breast cancer malignancy and hypoxia-inducible factor (HIF) stability. However, the mechanisms underlying cancer promotion remain ill defined. Here we show that CIN85 is a novel binding partner of the main HIF-prolyl hydroxylase, PHD2, but not of PHD1 or PHD3. Mechanistically, the N-terminal SRC homology 3 domains of CIN85 interacted with the proline-arginine-rich region within the N-terminus of PHD2, thereby inhibiting PHD2 activity and HIF degradation. This activity is essential in vivo, as specific loss of the CIN85-PHD2 interaction in CRISPR/Cas9-edited cells affected growth and migration properties, as well as tumor growth in mice. Overall, we discovered a previously unrecognized tumor growth checkpoint that is regulated by CIN85-PHD2 and uncovered an essential survival function in tumor cells by linking growth factor adaptors with hypoxia signaling. SIGNIFICANCE: This study provides unprecedented evidence for an oxygen-independent mechanism of PHD2 regulation that has important implications in cancer cell survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4042/F1.large.jpg.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Binding Sites
  • Cell Line, Tumor
  • Female
  • HEK293 Cells
  • Humans
  • Hypoxia-Inducible Factor-Proline Dioxygenases / genetics
  • Hypoxia-Inducible Factor-Proline Dioxygenases / metabolism*
  • Mice, Nude
  • Protein Interaction Domains and Motifs
  • Triple Negative Breast Neoplasms / metabolism
  • Triple Negative Breast Neoplasms / pathology*
  • Xenograft Model Antitumor Assays

Substances

  • Adaptor Proteins, Signal Transducing
  • SH3KBP1 protein, human
  • EGLN1 protein, human
  • Hypoxia-Inducible Factor-Proline Dioxygenases